Skip to main content
Data python recommended

NumPy Patterns

NumPy patterns covering broadcasting, vectorization, memory layout, universal functions, array creation, and performance optimization.

Difficulty
intermediate
Read time
1 min read
Version
v1.0.0
Confidence
established
Last updated

Quick Reference

NumPy: Vectorize everything (no Python loops). Use broadcasting for shape-compatible operations. Pre-allocate arrays (np.empty, np.zeros). Use out= parameter to avoid temporaries. Prefer C-contiguous arrays. Use appropriate dtypes (float32 vs float64). Boolean indexing for filtering. np.einsum for complex operations.

Use When

  • Numerical computing in Python
  • Array/matrix operations
  • Scientific computing
  • ML preprocessing

Skip When

  • GPU computing (use CuPy/JAX)
  • Distributed arrays (use Dask)
  • Symbolic math (use SymPy)

NumPy Patterns

NumPy patterns covering broadcasting, vectorization, memory layout, universal functions, array creation, and performance optimization.

Tags

numpy python arrays performance vectorization

Discussion