NumPy Patterns
NumPy patterns covering broadcasting, vectorization, memory layout, universal functions, array creation, and performance optimization.
- Difficulty
- intermediate
- Read time
- 1 min read
- Version
- v1.0.0
- Confidence
- established
- Last updated
Quick Reference
NumPy: Vectorize everything (no Python loops). Use broadcasting for shape-compatible operations. Pre-allocate arrays (np.empty, np.zeros). Use out= parameter to avoid temporaries. Prefer C-contiguous arrays. Use appropriate dtypes (float32 vs float64). Boolean indexing for filtering. np.einsum for complex operations.
Use When
- Numerical computing in Python
- Array/matrix operations
- Scientific computing
- ML preprocessing
Skip When
- GPU computing (use CuPy/JAX)
- Distributed arrays (use Dask)
- Symbolic math (use SymPy)
NumPy Patterns
NumPy patterns covering broadcasting, vectorization, memory layout, universal functions, array creation, and performance optimization.